STATICAL PROCESS CONTROL PDF

In , a man at Bell Laboratories developed the control chart and the concept that a process could be in statistical control. His name was William A. The demand for product had forced them to look for a better and more efficient way to monitor product quality without compromising safety. SPC filled that need. The use of SPC techniques in America faded following the war.

Author:Bralar Mejora
Country:India
Language:English (Spanish)
Genre:Literature
Published (Last):25 February 2016
Pages:23
PDF File Size:17.96 Mb
ePub File Size:6.86 Mb
ISBN:513-6-29303-935-8
Downloads:83365
Price:Free* [*Free Regsitration Required]
Uploader:Faukazahn



One of the key ideas in lean manufacturing is that defects should be detected as early as possible. Efforts to control manufacturing processes so that issues can be detected before defects occur actually predate lean.

SPC measures the outputs of processes, looking for small but statistically significant changes, so that corrections can be made before defects occur. SPC was first used within manufacturing, where it can greatly reduce waste due to rework and scrap. It can be used for any process that has a measurable output and is now widely used in service industries and healthcare.

SPC uses statistical methods to monitor and control process outputs. This includes graphical tools such as run charts and control charts. The design of experiments is also an important aspect of SPC. SPC must be carried out in two phases. The first phase ensures that the process is fit for purpose and establishes what it should look like.

The second phase monitors the process to ensure that it continues to perform as it should. Determining correct monitoring frequency is important during the second phase and will in part depend on changes in significant factors, or influences.

A key concept within SPC is that variation in processes may be due to two basic types of causes. Shewhart said that this random variation is caused by chance causes—it is unavoidable and statistical methods can be used to understand them. For example, if we know that a process is only noticeably affected by chance causes, then it is possible to calculate the probability of a given part being out of specification. Shewhart referred to other sources of variation as assignable causes.

These are not random in nature and are caused by identifiable events or changes. For example, a change in temperature, a different operator taking over a machine, or a change in the batch of material being used. It is very difficult to predict, using statistics alone, what the output of a process will be if there are assignable causes of variation. Below the noise floor it is not possible to detect the effects of assignable, or special, causes of variations.

If these special causes start to produce more significant variations then they become visible above the noise floor. These concepts also have parallels with measurement systems analysis MSA. Common or chance causes are equivalent to precision and repeatability in MSA.

Similarly, special or assignable causes are equivalent to bias or trueness. One of the aims of SPC is to achieve a process in which all the variation can be explained by common causes, giving a known probability of a defect. Any significant special cause variation should be detected and removed as quickly as possible. In modern SPC, a process is said to stable or in control when the observed variation appears statistically to be caused by common cause variation, at the level that has historically been recorded for the process.

This is often achieved using a control chart showing limits which represent the expected level of variation. A stable process may also be thought of as one in which any assignable cause variations are below the noise floor of the common cause, random variations.

Real processes have many sources of variation but usually only a few dominant special causes are significant. During the first phase of applying SPC to a process, these special causes are identified and removed to produce a stable process.

The limits of this process can then be determined statistically, provided another special cause does not emerge. For example, a once-stable process may start to change as tooling wears. The concept of a stable process also has a parallel in measurement uncertainty evaluation.

The uncertainty of a measurement should only be evaluated when any known systematic effects, or causes of bias, have been corrected, leaving a measurement that can be modelled by only random influences. SPC is a large subject that can involve some pretty complex statistics. However, only a very basic understanding of statistics is required to understand the core methods of SPC.

You need to understand standard deviation, probability distributions, and statistical significance. The standard deviation provides a measure of the variation or dispersion for a set of values. Suppose you want to measure the variation of a manufacturing process that is producing parts.

You could start by measuring 30 parts at the end of the process. Each of the parts has a slightly different measurement value. Looking at these values would give you an idea how much variation there is between the parts, but we want a single number which quantifies that variation.

The simplest way of measuring this dispersion would be to find the largest and the smallest values, and then subtract the smallest from the largest to give the range. The more parts we checked, the bigger the range we would get, so clearly this is not a reliable measure.

There is also no way of determining a probability of conformance based on the range. Consider this simple example. The mean of these values is the sum divided by n. To get rid of the direction the sign , we square each difference, then we add them all together and divide by n to get the mean:.

What has been calculated so far is the variance. Because each difference from the mean was squared, taking the square root of the variance makes sense, this is the Standard Deviation. However, because the sample only contained 5 parts, it is not a reliable estimate of the standard deviation for the process in general.

Therefore, a correction must be applied, this is done by using n-1 instead of n. The complete calculation of the standard deviation may be written as:. Standard deviation is used to measure the common cause variation in a process. Another basic statistical concept that is important in SPC is the probability distribution. Random events can be characterized using probability distributions.

The possible scores when you roll a six-sided die follow a simple probability distribution. The die has an equal chance of rolling a 1, 2, 3, 4, 5 or 6. If the dice is rolled 6, times, you would expect each number to occur approximately 1, times. If you made a bar chart of the scores, the bars would all be of roughly equal height.

This rectangular shape is known as a rectangular distribution. When two dice are rolled, something interesting happens. The score can be any integer between 2 and 12, but you are much more likely to get a score of 7 than a 2 or a This is because there are several ways to score a 7 but only one way to score a 2 or a For example, to score a total of 2, both dice need to roll a 1. All the possible scores, with the different ways to achieve them, are as follows:.

The probability of each score increases linearly from the lowest value to the middle value and then decreases linearly to the largest value. This type of probability distribution is known as a triangular distribution.

A triangular distribution occurs whenever two random effects with uniform distributions of similar magnitude are added together to give a combined affect. When more random effects are combined, the peak of the triangle starts to flatten and the ends extend into tails, giving a bell-shaped distribution known as the Gaussian, or normal, distribution.

Lots of uniform or triangular distributions add up to give this normal distribution. In fact, the normal distribution occurs whenever lots of different random effects, with different shaped distributions, add up to give a combined effect. This is proven more mathematically by the central limit theorem. Because of this effect, the normal distribution occurs very commonly in the complex systems of the natural world and processes are often simply assumed to be normal.

If we know the standard deviation and the probability distribution for a process, then it is possible to calculate the probability of the output taking a given range of values. This means that the probability of a defect can be calculated. It is also possible to calculate the probability that a given value belongs to this distribution.

If it is very unlikely that a measured part could have come from the probability distribution for the stable process, then it is likely that a new special cause has emerged, indicating that the process is going out of control. A run chart is a simple scatter plot with the sample number on the x-axis and the measured value on the y-axis. It presents a view of how the process changes over time. Control charts are very similar to run charts but they also include control limits and often other zones.

The number of standard deviations is often simply referred to as sigma. A control chart is a very important graphical tool used in SPC. It is important to understand that the control limits do not relate to the product specification or tolerance in any way.

They simply show the variation of the process when it is under control, so that its current operation can be compared with that state. Process capability is also important and should have been established during phase 1 of the SPC where the process is setup. The Control chart is used during phase 2 to ensure that the process is stable.

A control chart makes it easy to spot when a process is drifting or producing errors which cannot be explained by normal random variations. For example, if several points are all increasing or decreasing then this would indicate the process is drifting out of control. Different rules may be applied but in general, if any of these conditions are true then it indicates that the process is out of control:. Different types of control charts are used to monitor different types of processes with different sampling strategies.

All rights reserved. Registration on or use of this site constitutes acceptance of our Privacy Policy. We're working on a new experience for engineering. Try the new look X. Stories The latest engineering related news and articles from around the world. A collaborative platform that significantly improves the process to chronicle, share and advance projects online.

Discover thousands of jobs in engineering around the world.

JULIAN STALLABRASS CONTEMPORARY ART PDF

What is Statistical Process Control?

Walter Shewhart of Bell Laboratories in the 's, and were expanded upon by Dr. After early successful adoption by Japanese firms, Statistical Process Control has now been incorporated by organizations around the world as a primary tool to improve product quality by reducing process variation. Shewhart identified two sources of process variation: Chance variation that is inherent in process, and stable over time, and Assignable , or Uncontrolled variation, which is unstable over time - the result of specific events outside the system. Deming relabeled chance variation as Common Cause variation, and assignable variation as Special Cause variation.

AKADEEMILINE TEST PDF

Statistical Process Control (SPC)

Taking the guesswork out of quality control, Statistical Process Control SPC is a scientific, data-driven methodology for quality analysis and improvement. Quality data in the form of Product or Process measurements are obtained in real-time during manufacturing. This data is then plotted on a graph with pre-determined control limits. Control Limits on an XBar Range Chart Data that falls within the control limits indicates that everything is operating as expected. Any variation within the control limits is likely due to a common cause—the natural variation that is expected as part of the process. If data falls outside of the control limits, this indicates that an assignable cause is likely the source of the product variation, and something within the process should be changed to fix the issue before defects occur.

KIRCIAVIMO ZODYNAS PDF

Statistical process control

One of the key ideas in lean manufacturing is that defects should be detected as early as possible. Efforts to control manufacturing processes so that issues can be detected before defects occur actually predate lean. SPC measures the outputs of processes, looking for small but statistically significant changes, so that corrections can be made before defects occur. SPC was first used within manufacturing, where it can greatly reduce waste due to rework and scrap. It can be used for any process that has a measurable output and is now widely used in service industries and healthcare. SPC uses statistical methods to monitor and control process outputs. This includes graphical tools such as run charts and control charts.

Related Articles